Sains Malaysiana 54(11)(2025): 2661-2673

http://doi.org/10.17576/jsm-2025-5411-07

 

Interstock-Induced Anatomical and Metabolomic Shifts Enhance Growth and Stress Adaptation in Citrus Cultivars

(Perubahan Anatomi dan Metabolomik yang Dipicu oleh Interstok Meningkatkan Tumbesaran dan Penyesuaian terhadap Stres dalam Kultivar Sitrus)

 

AGUS SUGIYATNO1, NIRMALA FRIYANTI DEVY1,*, HARDIYANTO1, ANANG TRIWIRATNO1,

SRI WIDYANINGSIH1, EMI BUDIYATI1, FARIDA YULIANTI1, HASIM ASHARI1, MUTIA ERTI DWIASTUTI1, DORKAS PARHUSIP1 & IMRO’AH IKARINI2

 

1Research Center for Horticulture, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Bogor, Cibinong, Indonesia

2Research Center for Agroindustry, National Research and Innovation Agency of Indonesia, Kawasan Puspitek, Tangerang Selatan, Banten, Indonesia

 

Received: 29 October 2025/Accepted: 20 May 2025

 

Abstract

Citrus growers are challenged to be able to produce high yields while being resilient to environmental stress, while maintaining high yield and cultivar potential. However, the use of pummelo as an interstock-despite its growing relevance for cultivar replacement-remains poorly studied in terms of its anatomical and metabolic effects on scion varieties. This study evaluates the impact of Pummelo interstock on the growth, leaf anatomy, and metabolomic profile of three citrus cultivars: Sweet Orange (Manis Pacitan), Tangerine (Siam Pontianak), and Mandarin (Keprok Batu 55). Morphological assessment showed that interstock application increased leaf thickness by 3.9% and palisade layer thickness by 15.2%, with additional adaptations in epidermal and glandular structures suggesting enhanced stress tolerance. Stomatal density rose by 22% in certain combinations. GC-MS metabolomic profiling identified 91 metabolites, with interstock treatments increasing the accumulation of stress-related compounds such as flavonoids and terpenes. Stress-metabolite upregulation reached 59.6% in Keprok Batu 55, 36.2% in Manis Pacitan, and 47.8% in Siam Pontianak. Key pathway modifications involved the stimulation of fatty acid metabolism and the development of glycosylphosphatidylinositol (GPI) anchors in interstocked plants, which led to better morphological and physiological features. These findings highlight the role of interstock technology in promoting vegetative vigor, metabolic reprogramming, and stress adaptation in citrus, with practical implications for improving productivity and sustainability in citrus cultivation. Further research should explore long-term performance and underlying genetic mechanisms.

Keywords: Citrus; interstock; morpho-anatomical traits; pummelo; secondary metabolite

 

Abstrak

Penanam sitrus dicabar untuk menghasilkan hasil yang tinggi dan berdaya tahan terhadap tekanan alam sekitar, sambil mengekalkan potensi hasil dan kultivar yang tinggi. Walau bagaimanapun, penggunaan pummelo sebagai interstok-walaupun semakin relevan untuk penggantian kultivar-masih kurang dikaji dari segi kesan anatomi dan metaboliknya pada varieti scion. Kajian ini menilai kesan interstok pumello terhadap pertumbuhan, anatomi daun dan profil metabolomik tiga kultivar sitrus: Jeruk Manis (Manis Pacitan), Jeruk Keprok (Siam Pontianak) dan Jeruk Mandarin (Keprok Batu 55). Penilaian morfologi menunjukkan bahawa penggunaan interstok meningkatkan ketebalan daun sebanyak 3.9% dan lapisan palisade sebanyak 15.2%, disertai adaptasi pada epidermis dan kelenjar yang mencadangkan peningkatan toleransi tekanan. Ketumpatan stomata meningkat sebanyak 22% dalam beberapa gabungan. Pemprofilan GC-MS mengenal pasti 91 metabolit dengan interstok meningkatkan pengumpulan sebatian berkaitan tekanan seperti flavonoid dan terpena. Peningkatan metabolit tekanan dicatatkan sebanyak 59.6% di Keprok Batu 55, 36.2% di Manis Pacitan dan 47.8% di Siam Pontianak. Perubahan laluan utama termasuk pengaktifan metabolisme asid lemak dan biosintesis penambat glikosilfosfatidilinositol (GPI) dalam tumbuhan saling berstok, sepadan dengan anatomi dan fisiologi yang lebih baik. Hasil ini menyerlahkan potensi teknologi interstok dalam meningkatkan kekuatan vegetatif, pengaturcaraan semula metabolik dan penyesuaian tekanan dalam tanaman sitrus. Penyelidikan lanjut perlu dijalankan untuk menilai prestasi jangka panjang dan mekanisme genetik yang terlibat.

Kata kunci: Citrus; interstok; ciri morfo-anatomi; metabolit sekunder; pummelo

 

REFERENCES

Abadie, C., Lalande, J. & Tcherkez, G. 2022. Exact mass GC-MS analysis: Protocol, database, advantages, and application to plant metabolic profiling. Plant Cell and Environment 45(10): 3171-3183. https://doi.org/10.1111/pce.14407

Alves, N.S.F., Setzer, W.N. & da Silva, J.K.R. 2019. The chemistry and biological activities of Peperomia pellucida (Piperaceae): A critical review. Journal of Ethnopharmacology 232: 90-102. https://doi.org/10.1016/j.jep.2018.12.021

Anandakumar, P., Kamaraj, S. & Vanitha, M.K. 2021. D-limonene: A multifunctional compound with potent therapeutic effects.  Journal of Food Biochemistry 45(1): e13566.  https://doi.org/10.1111/jfbc.13566

Balfagón, D., Terán, F., de Oliveira, T.D.R., Santa-Catarina, C. & Gómez-Cadenas, A. 2022. Citrus rootstocks modify the scion antioxidant system under drought and heat stress combination. Plant Cell Reports 41(3): 593-602. https://doi.org/10.1007/s00299-021-02744-y

Bennici, S., Las Casas, G., Distefano, G., Gentile, A., Lana, G., Di Guardo, M., Nicolosi, E., La Malfa, S. & Continella, A. 2021. Rootstock affects floral induction in citrus engaging the expression of the FLOWERING LOCUS T (CiFT). Agriculture 11: 140. https://doi.org/Aghttps://doi.org/10.3390/agriculture11020140

Cahyanti, L.D., Sopandie, D., Santosa, E. & Purnamawati, H. 2024. Diversity of 17 genotypes of taro based on anatomy and nutritional value of tuber. HAYATI Journal of Biosciences 31(3): 465-473. https://doi.org/10.4308/hjb.31.3.465-473

Carrera, F.P., Noceda, C., Maridueña-Zavala, M.G. & Cevallos-Cevallos, J.M. 2021. Metabolomics, a powerful tool for understanding plant abiotic stress. Agronomy 11(5): 824. https://doi.org/10.3390/agronomy11050824

Cookson, S.J., Clemente Moreno, M.J., Hevin, C., Nyamba Mendome, L.Z., Delrot, S., Trossat-Magnin, C. & Ollat, N. 2013. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. Journal of Experimental Botany 64(10): 2997-3008. https://doi.org/10.1093/jxb/ert144

Dah-Nouvlessounon, D., Chokki, M., Noumavo, A.D.P., Cârâc, G., Furdui, B., Sina, H., Zongo, C., Savadogo, A., Baba-Moussa, L., Dinica, R.M. & Baba-Moussa, F. 2023. Ethnopharmacological value and biological activities via antioxidant and anti-protein denaturation activity of Morinda lucida Benth and Momordica charantia L. leaves extracts from Benin. Plants 12(6): 1228. https://doi.org/10.3390/plants12061228

David, O.A., Labulo, A.H., Adejayan, M.T., Adeleke, E.A., Adeniyi, I.M. & Terna, A.D. 2023. Anatomical adaptation of water-stressed Eugenia uniflora using green synthesized silver nanoparticles and melatonin. Microscopy Research and Technique 86(6): 648-658. https://doi.org/10.1002/jemt.24320

de Carvalho, C.C.C.R. & Caramujo, M.J. 2018. The various roles of fatty acids. Molecules 23(10): 2583. MDPI. https://doi.org/10.3390/molecules23102583

de Lima Costa, M.V., de Lima Félis, P.A., Masselani, K.J.S., Linard, T.L.M., Bucci, L.A. & de Lima Vieira, W. 2021. Organization of leaf vascular system and gas exchange in seedlings of Guazuma ulmifolia Lam. in different light conditions. Scientific Electronic Archives 14(7): 68-73. https://doi.org/10.36560/14720211366

de Lima Vieira, W., Boeger, M.R.T., Cosmo, N.L. & Coan, A.I. 2014. Leaf morphological plasticity of tree species from two developmental stages in Araucaria forest. Brazilian Archives of Biology and Technology 57(4): 476-485. https://doi.org/10.1590/S1516-89132014005000010

Deng, H., Achor, D., Exteberria, E., Yu, Q., Du, D., Stanton, D., Liang, G. & Gmitter, F.G. 2019. Phloem regeneration is a mechanism for Huanglongbing-tolerance of “Bearss” lemon and “LB8-9” Sugar Belle® mandarin. Frontiers in Plant Science 10: 277. https://doi.org/10.3389/fpls.2019.00277

Devy, N.F., Hardiyanto, Sugiyatno, A., Dwiastuti, M.E. & Yulianti, F. 2023. Leaf anatomy, photosynthetic characteristics, fruit quality, and genetic changes in “Borneo Prima” mandarin (Citrus Reticulata Blanco) grafted onto different interstocks in dry highland conditions. Applied Ecology and Environmental Research 21(2): 1805-1822. https://doi.org/10.15666/aeer/2102_18051822

Dutt, M., Mahmoud, L.M. & Grosser, J.W. 2023. Field performance of ‘Valencia’ sweet orange trees grafted onto pummelo interstocks and swingle citrumelo rootstocks under Huanglongbing (HLB) endemic conditions. Horticulturae 9(6): 719. https://doi.org/10.3390/horticulturae9060719

Dwiastuti, M.E., Sugiyatno, A., Devy, N.F. & Hardiyanto. 2023. The effect of interstock on the development of Huanglongbing disease and vegetative growth of three commercial citrus varieties in Indonesia. IOP Conference Series: Earth and Environmental Science 1172: 012034. https://doi.org/10.1088/1755-1315/1172/1/012034

Fayek, M.A., Ali, A.E.M. & Rashedy, A.A. 2022. Physiological and chemical performance of the Flame seedless grapevine cultivar in the presence of Paulsen 1103 as the interstock. Ciencia e Agrotecnologia 46: e021621. https://doi.org/10.1590/1413-7054202246021621

Fayek, M.A., Rashedy, A.A. & Ali, A.E.M. 2022. Alleviating the adverse effects of deficit irrigation in Flame seedless grapevine via Paulsen interstock. Revista Brasileira de Fruticultura 44(1): e-839. https://doi.org/10.1590/0100-29452022839

Goldschmidt, E.E. 2014. Plant grafting: New mechanisms, evolutionary implications. Frontiers in Plant Science 5: 727. https://doi.org/10.3389/fpls.2014.00727

González-Mas, M.C., Rambla, J.L., López-Gresa, M.P., Amparo Blázquez, M. & Granell, A. 2019. Volatile compounds in citrus essential oils: A comprehensive review. Frontiers in Plant Science 10: 12. https://doi.org/10.3389/fpls.2019.00012

Gutiérrez, M.A., Chávez, B.H., Gallegos, R.M.Z. & Borja, S.F. 2022. Characterization of natural extracts obtained by supercritical fluids (SCF) from Mashua tubers (Tropaeolum tuberosum) grown in Ecuador. International Journal of Health Sciences 6(S8): 1286-1293. https://doi.org/10.53730/ijhs.v6ns8.9968

He, W., Chai, J., Xie, R., Wu, Y., Wang, H., Wang, Y., Chen, Q., Wu, Z., Li, M., Lin, Y., Zhang, Y., Luo, Y., Zhang, Y., Tang, H. & Wang, X. 2024. The effects of a new citrus rootstock Citrus junos cv. Shuzhen No. 1 on performances of ten hybrid citrus cultivars. Plants 13(6): 794. https://doi.org/10.3390/plants13060794

Ho, C.H., Yang, M.H. & Lin, H.L. 2021. Temperature and different organs create volatile profile differences of edible gynura [Gynura bicolor (roxb. ex willd.) dc]. HortScience 56(8): 954-960. https://doi.org/10.21273/HORTSCI15851-21

Johannes, E., Tuwo, M., Katappanan, N., Henra, H. & Wirianti, G. 2022. Edible coating berbasis pati ubi kayu Manihot esculenta Crantz dan Jahe Merah Zingiber officinale var. rubrum memperpanjang umur simpan buah tomat Solanum lycopersicum L. Agrotrop: Journal on Agriculture Science 12(2): 204. https://doi.org/10.24843/ajoas.2022.v12.i02.p03

Khalil, N.H. 2023. The effect of organic fertilization on leaf mineral content of three citrus species. IOP Conference Series: Earth and Environmental Science 1158(4): 042049. https://doi.org/10.1088/1755-1315/1158/4/042049

Killiny, N., Valim, M.F., Jones, S.E. & Hijaz, F. 2018. Effect of different rootstocks on the leaf metabolite profile of ‘Sugar Belle’ mandarin hybrid. Plant Signaling and Behavior 13(3): e1445934. https://doi.org/10.1080/15592324.2018.1445934

Kumar, S., Awasthi, O.P., Dubey, A. & Sharma, R.M. 2019. Effect of different rootstocks on growth, leaf sclerophylly, and chlorophyll fractions of Kinnow mandarin. Indian J. Hort. 74(4): 505-509. https://doi.org/10.5958/0974-0112.2017.00098.6

Li, Q., Pan, H., Hao, P., Ma, Z., Liang, X., Yang, L. & Gao, Y. 2024. Mechanisms underlying the low-temperature adaptation of 17β-estradiol-degrading bacterial strain Rhodococcus sp. RCBS9: Insights from physiological and transcriptomic analyses. Frontiers in Microbiology 15: 1465627. https://doi.org/10.3389/fmicb.2024.1465627

Li, Y., Xin, G., Liu, C., Shi, Q., Yang, F. & Wei, M. 2020. Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biology 20: 318. https://doi.org/10.1186/s12870-020-02523-z

Liao, L., Li, Y., Bi, X., Xiong, B., Wang, X., Deng, H., Zhang, M., Sun, G., Jin, Z., Huang, Z. & Wang, Z. 2022. Transcriptome analysis of Harumi tangor fruits: Insights into interstock-mediated fruit quality. Frontiers in Plant Science 13: 995913. https://doi.org/10.3389/fpls.2022.995913

Luo, Z., Zhou, W., Xie, T., Xu, W., Shi, C., Xiao, Z., Si, Y., Ma, Y., Ren, Q., Di, L. & Shan, J. 2024. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharmaceutica Sinica B 14(8): 3385-3415. https://doi.org/10.1016/j.apsb.2024.04.027

Mahmoud, L.M., Huyck, P.J., Vincent, C.I., Gmitter, F.G., Grosser, J.W. & Dutt, M. 2021. Physiological responses and gene expression patterns in open-pollinated seedlings of a pummelo-mandarin hybrid rootstock exposed to salt stress and Huanglongbing. Plants 10(7): 1439. https://doi.org/10.3390/plants10071439

Marín, J., Rincón Barón, E.J. & Montoya-Lerma, J. 2020. Foliar anatomy of ten genotypes of the plant Manihot esculenta (Euphorbiaceae). Rev. Biol. Trop. (Int. J. Trop. Biol.) 68(3): 919-932.

Negi, J., Munemasa, S., Song, B., Tadakuma, R., Fujita, M., Azoulay-Shemer, T., Engineer, C.B., Kusumi, K., Nishida, I., Schroeder, J.I. & Iba, K. 2018. Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells. Proceedings of the National Academy of Sciences of the United States of America 115(36): 9038-9043. https://doi.org/10.1073/pnas.1810458115

Noreen, H., Smith, E.N., Farman, M., Claridge, T.D.W. & McCullagh, J.S.O. 2021. Isolation, separation, identification, and quantification of bioactive methylated flavone regioisomers by UHPLC-MS/MS. Analytical Science Advances 2(7-8): 364-372. https://doi.org/10.1002/ansa.202100016

Oliveira, J.A.A., Bruckner, C.H., da Silva, D.F.P., dos Santos, C.E.M., dos Santos Soares, W. & Nunes, L.V. 2019. Performance of interstocks in the plant development and fruit quality of plum trees. Acta Scientiarum Agronomy 41(1): 39928. https://doi.org/10.4025/actasciagron.v41i1.39928

Rasool, A., Mansoor, S., Bhat, K.M., Hassan, G.I., Baba, T.R., Alyemeni, M.N., Alsahli, A.A., El-Serehy, H.A., Paray, B.A. & Ahmad, P. 2020. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Frontiers in Plant Science 11: 590847. https://doi.org/10.3389/fpls.2020.590847

Raveau, R., Fontaine, J. & Lounès-Hadj Sahraoui, A. 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9(3): 365. https://doi.org/10.3390/foods9030365

ReportLinker. 2025. Forecast: Citrus Production in Indonesia. https://www.reportlinker.com/ dataset/c48156566679678c234d9dcef0a591b36c41ad9f? (Accessed on August 25, 2025).

Rong, Y., Liao, L., Li, S., Wei, W., Bi, X., Sun, G., He, S. & Wang, Z. 2023. Comparative transcriptomic and physiological analyses reveal key factors for interstocks to improve grafted seedling growth in Tangor. International Journal of Molecular Sciences 24(7): 6533. https://doi.org/10.3390/ijms24076533

Shen, Y., Zhuang, W., Tu, X., Gao, Z., Xiong, A., Yu, X., Li, X., Li, F. & Qu, S. 2019. Transcriptomic analysis of interstock-induced dwarfism in Sweet Persimmon (Diospyros kaki Thunb.). Horticulture Research 6: 51. https://doi.org/10.1038/s41438-019-0133-7

Susilo, D.E.H. 2015. Identifikasi nilai konstanta bentuk daun untuk pengukuran luas daun metode panjang kali lebar pada tanaman hortikultura di tanah gambut. Anterior Jurnal 14(2): 139-146.

Taj, T., Sultana, R., Shahin, H.D., Chakraborthy, M. & Gulzar Ahmed, M. 2021. Phytol A phytoconstituent, its chemistry and pharmacological actions. GIS-Zeitschrift Geoinformatik 8(1): 395-406.

Thiesen, L.A., Pinheiro, M.V.M., Holz, E., Werner, A., Eloy, E., Caron, B.O. & Schmidt, D. 2022. Phenotypic plasticity of Aloysia citrodora: Anatomical changes to water availability and seasons. Comunicata Scientiae 13: e3590. https://doi.org/10.14295/cs.v13.3590

Torabi, F., Majd, A. & Enteshari, S. 2015. The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Science and Plant Nutrition 61(5): 788-798. https://doi.org/10.1080/00380768.2015.1005540

Toscano-Morales, R., Xoconostle-Cázares, B., Martínez-Navarro, A.C. & Ruiz-Medrano, R. 2016. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. Plant Signaling and Behavior 11(3): e1071003 https://doi.org/10.1080/15592324.2015.1071003

Trend Economy. 2024. Indonesia Imports and Exports of World Citrus Fruit 2012-2023. https://trendeconomy.com/data/h2/Indonesia/0805? (Accessed on 25 August 2025).

Vives-Peris, V., López-Climent, M.F., Moliner-Sabater, M., Gómez-Cadenas, A. & Pérez-Clemente, R.M. 2023. Morphological, physiological, and molecular scion traits are determinants for salt-stress tolerance of grafted citrus plants. Frontiers in Plant Science 14: 1145625.  https://doi.org/10.3389/fpls.2023.1145625

Wang, T., Xiong, B., Tan, L., Yang, Y., Zhang, Y., Ma, M., Xu, Y., Liao, L., Sun, G., Liang, D., Xia, H., Zhang, X., Wang, Z. & Wang, J. 2020. Effects of interstocks on growth and photosynthetic characteristics in ‘Yuanxiaochun’ Citrus seedlings. Functional Plant Biology 47(11): 977-987. https://doi.org/10.1071/FP20079

Widyaningsih, S., Utami, S.N.H., Joko, T. & Subandiyah, S. 2017. Development of disease and growth on six scion/rootstock combinations of citrus seedlings under Huanglongbing pressure. Journal of Agricultural Science 9(6): 229-238. https://doi.org/10.5539/jas.v9n6p229

World Citrus Organization (WCO). 2022. Produce Report. World Citrus Organization Announces 2021/22 Statistics. https://www.producereport.com/article/world-citrus-organization-announces-202122-statistics (Accessed on 25 August 2025).

Yao, X.C., Meng, L.F., Zhao, W.L. & Mao, G.L. 2023. Changes in the morphology traits, anatomical structure of the leaves, and transcriptome in Lycium barbarum L. under salt stress. Frontiers in Plant Science 14: 1090366. https://doi.org/10.3389/fpls.2023.1090366

Yulianti, F. & Agisimanto, D. 2023. Leaf physiological responses of the citrus commercial varieties grafted onto rootstocks. IOP Conference Series: Earth and Environmental Science 1172: 012017. https://doi.org/10.1088/1755-1315/1172/1/012017

Zhang, L., Su, Q.F., Wang, L.S., Lv, M.W., Hou, Y.X. & Li, S.S. 2023a. Linalool: A ubiquitous floral volatile mediating the communication between plants and insects. Journal of Systematics and Evolution 61(3): 538-549. https://doi.org/10.1111/jse.12930

Zhang, X., Yang, W., Tahir, M.M., Chen, X., Saudreau, M., Zhang, D. & Costes, E. 2023b. Contributions of leaf distribution and leaf functions to photosynthesis and water-use efficiency from leaf to canopy in apple: A comparison of interstocks and cultivars. Frontiers in Plant Science 14: 1117051. https://doi.org/10.3389/fpls.2023.1117051

Zheng, L. & Van Labeke, M.C. 2017. Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science 8: 917. https://doi.org/10.3389/fpls.2017.00917

 

*Corresponding author; email: nfdevy@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous

next